logo of US Feasibility Finder on the GPT Store

US Feasibility Finder on the GPT Store

Use US Feasibility Finder on ChatGPT Use US Feasibility Finder on 302.AI

Introduction to US Feasibility Finder


US Feasibility Finder is a powerful AI-driven tool that leverages advanced GPT technology to provide comprehensive feasibility checks for the ARF USA Panel.

With its user-friendly interface and robust data analysis capabilities, this bot offers valuable insights into various demographic categories, including age, gender, employment status, household income, education, and race.

US Feasibility Finder is an essential tool for market researchers, data analysts, and decision-makers seeking to understand the feasibility of their target audiences within the United States. By providing accurate and up-to-date information on panel feasibility across different regions and demographic segments, this AI bot enables users to make informed decisions and optimize their research strategies.

Whether you're planning a nationwide survey or targeting specific consumer groups, US Feasibility Finder is the go-to solution for reliable and efficient feasibility checks, empowering you to achieve your research goals with confidence.

GPT Description

AI for ARF USA Panel Feasibility Checks ๐Ÿ“Š๐Ÿ”ฌ

GPT Prompt Starters

  • Age Gender (BROAD) Feasibility ๐Ÿ“Š ๐Ÿ” ๐Ÿ‘ฌ๐Ÿ“ˆ ๐Ÿงฎ ๐Ÿ“‰ ๐Ÿ’ป import pandas as pd # Load the dataset data = pd.read_csv('/mnt/data/Angus Reid Forum USA.csv') # Preparing the data data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') # Calculate feasibility feasibility = (data.groupby(['P_Region_FIP', 'Age x Gender Broad'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Reordering columns columns_order = ['Female 18-34', 'Female 35-54', 'Female 55 Plus', 'Male 18-34', 'Male 35-54', 'Male 55 Plus'] feasibility = feasibility[columns_order] # Adding row totals feasibility['Total'] = feasibility.sum(axis=1) # Reset index to display the regions feasibility.reset_index(inplace=True) # Adding column totals column_totals = feasibility.sum(numeric_only=True) column_totals['P_Region_FIP'] = 'Total' feasibility = feasibility.append(column_totals, ignore_index=True) # Display the feasibility table with row and column totals print(feasibility)
  • Age Gender (GENERATION) Feasibility ๐Ÿ‘ถ๐Ÿง’๐Ÿ‘ง๐Ÿ‘ต๐Ÿ‘ด - import pandas as pd # Load the dataset data = pd.read_csv('/mnt/data/Angus Reid Forum USA.csv') # Preparing the data with 'Generation' data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') data['Gender x Generation'] = data['Gender'] + " " + data['Generation'] # Calculate feasibility using combined 'Gender x Generation' category feasibility_gen = (data.groupby(['P_Region_FIP', 'Gender x Generation'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sorting columns to have females on the left and males on the right columns_sorted_gen = sorted(feasibility_gen.columns, key=lambda x: (x.split()[0], x.split()[1])) feasibility_gen = feasibility_gen[columns_sorted_gen] # Adding row totals feasibility_gen['Total'] = feasibility_gen.sum(axis=1) # Reset index to display the regions feasibility_gen.reset_index(inplace=True) # Adding column totals column_totals_gen = feasibility_gen.sum(numeric_only=True) column_totals_gen['P_Region_FIP'] = 'Total' feasibility_gen = feasibility_gen.append(column_totals_gen, ignore_index=True) # Display the feasibility table with row and column totals print(feasibility_gen)
  • Age Gender (FINE) Feasibility ๐Ÿ“Š ๐Ÿ” ๐Ÿ‘ฌ๐Ÿ“ˆ ๐Ÿงฎ ๐Ÿ“‰ ๐Ÿ’ป - import pandas as pd # Load the dataset data = pd.read_csv('/mnt/data/Angus Reid Forum USA.csv') # Preparing the data data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') data['Gender x Age Fine'] = data['Gender'] + " " + data['Age Fine'] # Calculate feasibility using combined 'Gender x Age Fine' category feasibility = (data.groupby(['P_Region_FIP', 'Gender x Age Fine'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sorting columns to have females on the left and males on the right columns_sorted = sorted(feasibility.columns, key=lambda x: (x.split()[0], x.split()[1])) feasibility = feasibility[columns_sorted] # Adding row totals feasibility['Total'] = feasibility.sum(axis=1) # Reset index to display the regions feasibility.reset_index(inplace=True) # Adding column totals column_totals = feasibility.sum(numeric_only=True) column_totals['P_Region_FIP'] = 'Total' feasibility = feasibility.append(column_totals, ignore_index=True) # Save or display the feasibility table with row and column totals print(feasibility)
  • Employment Status Feasibility ๐Ÿ’ผ๐Ÿ“ˆ๐Ÿค๐Ÿข๐Ÿ’ฒ๐Ÿ“‰ ๐Ÿ’ป - import pandas as pd def calculate_feasibility(csv_file_path, region_col, employment_col, response_rate_col, employment_order): # Load the dataset data = pd.read_csv(csv_file_path) # Convert the response rate to numeric, handling any non-numeric values data[response_rate_col] = pd.to_numeric(data[response_rate_col], errors='coerce') # Calculate feasibility feasibility = (data.groupby([region_col, employment_col])[response_rate_col] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)[employment_order]) # Adding row totals feasibility['Total'] = feasibility.sum(axis=1) # Reset index to display the regions feasibility.reset_index(inplace=True) # Adding column totals column_totals = feasibility.sum(numeric_only=True) column_totals[region_col] = 'Total' feasibility = feasibility.append(column_totals, ignore_index=True) return feasibility # Parameters for the function csv_file_path = '/mnt/data/Angus Reid Forum USA.csv' # Path to your dataset region_col = 'P_Region_FIP' # Column name for region employment_col = "First, we would like to ask a few questions about your main job. Are youโ€ฆ?" # Employment status column response_rate_col = 'Response Rate' # Column name for response rate employment_order = [ 'A full-time employee', 'A part-time or contract employee', 'A business owner', 'Self-employed', 'Retired', 'Unemployed but looking for work', 'Unemployed and not looking for work', 'Other' # Exclude any category not present in your data ] # Calculate and display the feasibility table feasibility_table = calculate_feasibility(csv_file_path, region_col, employment_col, response_rate_col, employment_order) print(feasibility_table)
  • VizMin Feasibility ๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆณ๐Ÿ‘จ๐Ÿพโ€๐Ÿฆฑ๐Ÿ‘ณ๐Ÿ‘ฉ๐Ÿป๐Ÿง‘๐Ÿฝ๐Ÿง• - import pandas as pd # Load the dataset data = pd.read_csv('/mnt/data/Angus Reid Forum USA.csv') # Preparing the data data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') data['Viz Min'].fillna('Not Specified', inplace=True) # Calculate feasibility with "Viz Min" nested within gender feasibility_viz_min = (data.groupby(['P_Region_FIP', 'Gender', 'Viz Min'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(level=[1, 2], fill_value=0)) # Preparing the columns order based on gender and Viz Min viz_min_categories = data['Viz Min'].unique() columns_order_viz_min = [(gender, viz_min) for gender in ['Female', 'Male'] for viz_min in viz_min_categories] feasibility_viz_min = feasibility_viz_min.reindex(columns=columns_order_viz_min, fill_value=0) # Adding row totals feasibility_viz_min['Total'] = feasibility_viz_min.sum(axis=1) # Reset index to display the regions feasibility_viz_min.reset_index(inplace=True) # Adding column totals column_totals_viz_min = feasibility_viz_min.sum(numeric_only=True) column_totals_viz_min['P_Region_FIP'] = 'Total' feasibility_viz_min = feasibility_viz_min.append(column_totals_viz_min, ignore_index=True) # Display the feasibility table with Viz Min nested within gender print(feasibility_viz_min)
  • Household Income Feasibility - ๐Ÿ˜„ ๐Ÿค‘ ๐Ÿ’ฐ ๐Ÿ’Ž - import pandas as pd # Load the dataset data = pd.read_csv('/mnt/data/Angus Reid Forum USA.csv') # Preparing the data data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') income_column = "Which of the following ranges best describes your total annual household income before taxes?" # Calculate feasibility for household income income_feasibility = (data.groupby(['P_Region_FIP', income_column])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sorting columns in ascending order of income ranges income_feasibility = income_feasibility.sort_index(axis=1) # Adding row totals income_feasibility['Total'] = income_feasibility.sum(axis=1) # Reset index to display the regions income_feasibility.reset_index(inplace=True) # Adding column totals income_column_totals = income_feasibility.sum(numeric_only=True) income_column_totals['P_Region_FIP'] = 'Total' income_feasibility = income_feasibility.append(income_column_totals, ignore_index=True) # Display the feasibility table with row and column totals print(income_feasibility)
  • Education Feasibility -๐ŸŽ“ ๐Ÿ“š ๐Ÿ“– โœ๏ธ ๐Ÿ“ import pandas as pd # Load the dataset data = pd.read_csv('/mnt/data/Angus Reid Forum USA.csv') # Preparing the data data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') # Calculate feasibility for Education Broad category feasibility_education = (data.groupby(['P_Region_FIP', 'Education Broad'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Adding row totals feasibility_education['Total'] = feasibility_education.sum(axis=1) # Reset index to display the regions feasibility_education.reset_index(inplace=True) # Adding column totals column_totals_education = feasibility_education.sum(numeric_only=True) column_totals_education['P_Region_FIP'] = 'Total' feasibility_education = feasibility_education.append(column_totals_education, ignore_index=True) # Display the feasibility table with Education Broad category print(feasibility_education)
  • Age Gender (BROAD) + Education Feasibility ๐Ÿ‘ฌ๐ŸŽ“ ๐Ÿ“š ๐Ÿ“– โœ๏ธ ๐Ÿ“-import pandas as pd # Load the dataset data = pd.read_csv('/mnt/data/Angus Reid Forum USA.csv') # Original file path # Prepare the data by converting 'Response Rate' to numeric, handling non-numeric values data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') # Calculate feasibility for Age x Gender Broad category feasibility_age_gender = ( data.groupby(['P_Region_FIP', 'Age x Gender Broad'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0) ) # Reordering columns for Age x Gender Broad columns_order_age_gender = [ 'Female 18-34', 'Female 35-54', 'Female 55 Plus', 'Male 18-34', 'Male 35-54', 'Male 55 Plus' ] feasibility_age_gender = feasibility_age_gender[columns_order_age_gender] # Rename columns for clarity in the merged table feasibility_age_gender.columns = [f'AGB_{col}' for col in feasibility_age_gender.columns] # Calculate feasibility for Education Broad category feasibility_education = ( data.groupby(['P_Region_FIP', 'Education Broad'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0) ) # Rename columns for clarity in the merged table feasibility_education.columns = [ f'EDU_{col}' if col != 'P_Region_FIP' else col for col in feasibility_education.columns ] # Correctly merging the two tables on 'P_Region_FIP' merged_feasibility = pd.merge(feasibility_age_gender.reset_index(), feasibility_education.reset_index(), on='P_Region_FIP') # Swapping the order of the columns "College" with "High School or Less" columns_reordered = ['P_Region_FIP', 'AGB_Female 18-34', 'AGB_Female 35-54', 'AGB_Female 55 Plus', 'AGB_Male 18-34', 'AGB_Male 35-54', 'AGB_Male 55 Plus', 'EDU_High school or less', 'EDU_College', 'EDU_University Plus'] merged_feasibility_reordered = merged_feasibility[columns_reordered] # Calculating column totals (excluding the region column) for the reordered table column_totals_reordered = merged_feasibility_reordered.iloc[:, 1:].sum().rename('Total') merged_feasibility_with_totals_reordered = merged_feasibility_reordered.append(column_totals_reordered, ignore_index=True) # Setting the 'P_Region_FIP' for the totals row merged_feasibility_with_totals_reordered.at[len(merged_feasibility_with_totals_reordered) - 1, 'P_Region_FIP'] = 'Total' # Display the table with reordered columns print(merged_feasibility_with_totals_reordered)
  • Race Feasibility - ๐Ÿ‘ฉ๐Ÿฟ๐Ÿ‘ฒ๐Ÿ‘ณ๐Ÿง•๐Ÿ‘จโ€๐Ÿฆฑ ๐Ÿ‘ฉโ€๐Ÿฆฐ - import pandas as pd # Load the dataset file_path = '/mnt/data/Angus Reid Forum USA.csv' # Specific file path and name data = pd.read_csv(file_path) # Preparing the data data['Response Rate'] = pd.to_numeric(data['Response Rate'], errors='coerce') # Calculate feasibility based on Race race_feasibility = (data.groupby(['P_Region_FIP', 'Race'])['Response Rate'] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sort the columns by their total frequency in descending order and adjust the order race_totals = race_feasibility.sum().sort_values(ascending=False) sorted_columns = race_totals.index.tolist() # Move 'Two or more races' and 'Some other race' to the end sorted_columns.remove('Two or more races') sorted_columns.remove('Some other race') sorted_columns += ['Two or more races', 'Some other race'] # Move 'Other Asian' after 'Vietnamese' other_asian_index = sorted_columns.index('Other Asian [e.g. Cambodian, Indonesian]') vietnamese_index = sorted_columns.index('Vietnamese') sorted_columns.insert(vietnamese_index + 1, sorted_columns.pop(other_asian_index)) # Reorder the feasibility table according to the adjusted column order race_feasibility = race_feasibility[sorted_columns] # Adding row totals race_feasibility['Total'] = race_feasibility.sum(axis=1) # Reset index to display the regions race_feasibility.reset_index(inplace=True) # Display the race feasibility table with row and column totals print(race_feasibility)
Use US Feasibility Finder on 302.AI

US Feasibility Finder GPT FAQs

Currently, access to this GPT requires a ChatGPT Plus subscription.
Visit the largest GPT directory GPTsHunter.com, search to find the current GPT: "US Feasibility Finder", click the button on the GPT detail page to navigate to the GPT Store. Follow the instructions to enter your detailed question and wait for the GPT to return an answer. Enjoy!
We are currently calculating its ranking on the GPT Store. Please check back later for updates.

More custom GPTs by Angus Reid Group on the GPT Store

Best Alternative GPTs to US Feasibility Finder on GPTs Store

US Law & Contract Reader (not lawyer/legal advice)

US Law & Contract Reader. Disclaimer: Not lawyer; not legal advice; always consult with a legal professional.

600K+

US Visa & Immigration Assistant

Get help on US visas, green cards, and citizenship applications

5K+

US Immigration Advisor

Experienced immigration advisor offering expert guidance.

5K+

US Visa GPT

I'm a U.S. Immigration GPT specializing in US Visas. Here to help you figure out the right Visa for you, and pathways to the Green Card!

5K+

US Tax Law Navigator

Formal, professional US tax law expert.

5K+

US Immigration, Visa, Green Card, Citizenship AI

Advanced Legal GPT Assistant sourced from top immigration law sources: Kuzman, Aila, INA, CFR, Procedure & Practice Manuals, and UCIS.gov. Disclaimer: An AI is being used. Materials found on here are not a substitute for independent legal advice. Always seek an Attorney.

5K+

US General Aviation Expert

US Aviation Expert with hyperlinked FAR references, weather capabilities and aircraft registration data. For entertainment and educational purposes only. NOTE: First request for METAR, TAF or registration data may "fail" due to OpenAI bug. Try again!

5K+

US Real Estate Agent

Bridge the Information Gap in Real Estate

1K+

๋ฏธ๊ตญ์ฃผ์‹ ์ „๋ฌธ๊ฐ€

ํ•œ๊ตญ์–ด๋ฅผ ๊ตฌ์‚ฌํ•˜๋Š” ์ฃผ์‹์‹œ์žฅ ์ฒœ์žฌ๋กœ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„๊ณผ ์ „๋žต์ ์ธ ์กฐ์–ธ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

1K+

US Criminal Law Bot

Questions about US criminal law? I can point you to the right statute and key cases.

1K+

US GAAP Advisor

US GAAP advisor offering current accounting guidance and information

1K+

US Labor Law Lawyer

Provides expert legal advice and guidance on US labor law issues, such as workplace rights, wrongful termination, and employment contracts.

1K+

US Options Trading AI Companion

OptiStrat is designed to assist traders and investors in building and analyzing US options strategies. It serves as a companion bot that provides suggestions, scenario analyses, and real-time data to help users make informed decisions based on their sentiment towards a particular stock or index.

900+

US Immigration Assistant

Paralegal specializing in Immigration Law, assisting with research and document preparation.

800+

US Visa Interview Coach

Mock U.S. Visa Interview Coach

700+

US Case Law Research Assistant

US case law research assistant to search the Caselaw Access Project

700+

US Immigration Assistant

Expert insights on US visa and immigration document processes

400+

US Army Doctrine Assistant

An assistant for locating and interpreting U.S. Army doctrine.

300+

US State Department FAM Answer Bot

Exploring the Foreign Affairs Manual (FAM) and associated Handbooks (FAHs) from the US State Department

300+

Esperto Agevolazioni e Prefattibilitร 

Esperto in normative di agevolazioni e prefattibilitร , con focus su dettagli specifici e confronti.

2+