Text to PPT AI on the GPT Store
GPT Description
GPT Prompt Starters
- Create a PPT file for the long text, Thermodynamics, science of the relationship between heat, work, temperature, and energy. In broad terms, thermodynamics deals with the transfer of energy from one place to another and from one form to another. The key concept is that heat is a form of energy corresponding to a definite amount of mechanical work. What are the laws of thermodynamics? What are the laws of thermodynamics? Thermodynamics is the science of the relationship between heat, work, temperature, and energy. See all videos for this article Heat was not formally recognized as a form of energy until about 1798, when Count Rumford (Sir Benjamin Thompson), a British military engineer, noticed that limitless amounts of heat could be generated in the boring of cannon barrels and that the amount of heat generated is proportional to the work done in turning a blunt boring tool. Rumford’s observation of the proportionality between heat generated and work done lies at the foundation of thermodynamics. Another pioneer was the French military engineer Sadi Carnot, who introduced the concept of the heat-engine cycle and the principle of reversibility in 1824. Carnot’s work concerned the limitations on the maximum amount of work that can be obtained from a steam engine operating with a high-temperature heat transfer as its driving force. Later that century, these ideas were developed by Rudolf Clausius, a German mathematician and physicist, into the first and second laws of thermodynamics, respectively. The most important laws of thermodynamics are: The zeroth law of thermodynamics. When two systems are each in thermal equilibrium with a third system, the first two systems are in thermal equilibrium with each other. This property makes it meaningful to use thermometers as the “third system” and to define a temperature scale. The first law of thermodynamics, or the law of conservation of energy. The change in a system’s internal energy is equal to the difference between heat added to the system from its surroundings and work done by the system on its surroundings. In other words, energy can not be created or destroyed but merely converted from one form to another. The second law of thermodynamics. Heat does not flow spontaneously from a colder region to a hotter region, or, equivalently, heat at a given temperature cannot be converted entirely into work. Consequently, the entropy of a closed system, or heat energy per unit temperature, increases over time toward some maximum value. Thus, all closed systems tend toward an equilibrium state in which entropy is at a maximum and no energy is available to do useful work. The third law of thermodynamics. The entropy of a perfect crystal of an element in its most stable form tends to zero as the temperature approaches absolute zero. This allows an absolute scale for entropy to be established that, from a statistical point of view, determines the degree of randomness or disorder in a system. Although thermodynamics developed rapidly during the 19th century in response to the need to optimize the performance of steam engines, the sweeping generality of the laws of thermodynamics makes them applicable to all physical and biological systems. In particular, the laws of thermodynamics give a complete description of all changes in the energy state of any system and its ability to perform useful work on its surroundings. This article covers classical thermodynamics, which does not involve the consideration of individual atoms or molecules. Such concerns are the focus of the branch of thermodynamics known as statistical thermodynamics, or statistical mechanics, which expresses macroscopic thermodynamic properties in terms of the behaviour of individual particles and their interactions. It has its roots in the latter part of the 19th century, when atomic and molecular theories of matter began to be generally accepted. Fundamental concepts Thermodynamic states The application of thermodynamic principles begins by defining a system that is in some sense distinct from its surroundings. For example, the system could be a sample of gas inside a cylinder with a movable piston, an entire steam engine, a marathon runner, the planet Earth, a neutron star, a black hole, or even the entire universe. In general, systems are free to exchange heat, work, and other forms of energy with their surroundings. Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now A system’s condition at any given time is called its thermodynamic state. For a gas in a cylinder with a movable piston, the state of the system is identified by the temperature, pressure, and volume of the gas. These properties are characteristic parameters that have definite values at each state and are independent of the way in which the system arrived at that state. In other words, any change in value of a property depends only on the initial and final states of the system, not on the path followed by the system from one state to another. Such properties are called state functions. In contrast, the work done as the piston moves and the gas expands and the heat the gas absorbs from its surroundings depend on the detailed way in which the expansion occurs. The behaviour of a complex thermodynamic system, such as Earth’s atmosphere, can be understood by first applying the principles of states and properties to its component parts—in this case, water, water vapour, and the various gases making up the atmosphere. By isolating samples of material whose states and properties can be controlled and manipulated, properties and their interrelations can be studied as the system changes from state to state. Thermodynamic equilibrium A particularly important concept is thermodynamic equilibrium, in which there is no tendency for the state of a system to change spontaneously. For example, the gas in a cylinder with a movable piston will be at equilibrium if the temperature and pressure inside are uniform and if the restraining force on the piston is just sufficient to keep it from moving. The system can then be made to change to a new state only by an externally imposed change in one of the state functions, such as the temperature by adding heat or the volume by moving the piston. A sequence of one or more such steps connecting different states of the system is called a process. In general, a system is not in equilibrium as it adjusts to an abrupt change in its environment. For example, when a balloon bursts, the compressed gas inside is suddenly far from equilibrium, and it rapidly expands until it reaches a new equilibrium state. However, the same final state could be achieved by placing the same compressed gas in a cylinder with a movable piston and applying a sequence of many small increments in volume (and temperature), with the system being given time to come to equilibrium after each small increment. Such a process is said to be reversible because the system is at (or near) equilibrium at each step along its path, and the direction of change could be reversed at any point. This example illustrates how two different paths can connect the same initial and final states. The first is irreversible (the balloon bursts), and the second is reversible. The concept of reversible processes is something like motion without friction in mechanics. It represents an idealized limiting case that is very useful in discussing the properties of real systems. Many of the results of thermodynamics are derived from the properties of reversible processes. Temperature The concept of temperature is fundamental to any discussion of thermodynamics, but its precise definition is not a simple matter. For example, a steel rod feels colder than a wooden rod at room temperature simply because steel is better at conducting heat away from the skin. It is therefore necessary to have an objective way of measuring temperature. In general, when two objects are brought into thermal contact, heat will flow between them until they come into equilibrium with each other. When the flow of heat stops, they are said to be at the same temperature. The zeroth law of thermodynamics formalizes this by asserting that if an object A is in simultaneous thermal equilibrium with two other objects B and C, then B and C will be in thermal equilibrium with each other if brought into thermal contact. Object A can then play the role of a thermometer through some change in its physical properties with temperature, such as its volume or its electrical resistance. With the definition of equality of temperature in hand, it is possible to establish a temperature scale by assigning numerical values to certain easily reproducible fixed points. For example, in the Celsius (°C) temperature scale, the freezing point of pure water is arbitrarily assigned a temperature of 0 °C and the boiling point of water the value of 100 °C (in both cases at 1 standard atmosphere; see atmospheric pressure). In the Fahrenheit (°F) temperature scale, these same two points are assigned the values 32 °F and 212 °F, respectively. There are absolute temperature scales related to the second law of thermodynamics. The absolute scale related to the Celsius scale is called the Kelvin (K) scale, and that related to the Fahrenheit scale is called the Rankine (°R) scale. These scales are related by the equations K = °C + 273.15, °R = °F + 459.67, and °R = 1.8 K. Zero in both the Kelvin and Rankine scales is at absolute zero. Work and energy Energy has a precise meaning in physics that does not always correspond to everyday language, and yet a precise definition is somewhat elusive. The word is derived from the Greek word ergon, meaning work, but the term work itself acquired a technical meaning with the advent of Newtonian mechanics. For example, a man pushing on a car may feel that he is doing a lot of work, but no work is actually done unless the car moves. The work done is then the product of the force applied by the man multiplied by the distance through which the car moves. If there is no friction and the surface is level, then the car, once set in motion, will continue rolling indefinitely with constant speed. The rolling car has something that a stationary car does not have—it has kinetic energy of motion equal to the work required to achieve that state of motion. The introduction of the concept of energy in this way is of great value in mechanics because, in the absence of friction, energy is never lost from the system, although it can be converted from one form to another. For example, if a coasting car comes to a hill, it will roll some distance up the hill before coming to a temporary stop. At that moment its kinetic energy of motion has been converted into its potential energy of position, which is equal to the work required to lift the car through the same vertical distance. After coming to a stop, the car will then begin rolling back down the hill until it has completely recovered its kinetic energy of motion at the bottom. In the absence of friction, such systems are said to be conservative because at any given moment the total amount of energy (kinetic plus potential) remains equal to the initial work done to set the system in motion. As the science of physics expanded to cover an ever-wider range of phenomena, it became necessary to include additional forms of energy in order to keep the total amount of energy constant for all closed systems (or to account for changes in total energy for open systems). For example, if work is done to accelerate charged particles, then some of the resultant energy will be stored in the form of electromagnetic fields and carried away from the system as radiation. In turn the electromagnetic energy can be picked up by a remote receiver (antenna) and converted back into an equivalent amount of work. With his theory of special relativity, Albert Einstein realized that energy (E) can also be stored as mass (m) and converted back into energy, as expressed by his famous equation E = mc2, where c is the velocity of light. All of these systems are said to be conservative in the sense that energy can be freely converted from one form to another without limit. Each fundamental advance of physics into new realms has involved a similar extension to the list of the different forms of energy. In addition to preserving the first law of thermodynamics (see below), also called the law of conservation of energy, each form of energy can be related back to an equivalent amount of work required to set the system into motion. Thermodynamics encompasses all of these forms of energy, with the further addition of heat to the list of different kinds of energy. However, heat is fundamentally different from the others in that the conversion of work (or other forms of energy) into heat is not completely reversible, even in principle. In the example of the rolling car, some of the work done to set the car in motion is inevitably lost as heat due to friction, and the car eventually comes to a stop on a level surface. Even if all the generated heat were collected and stored in some fashion, it could never be converted entirely back into mechanical energy of motion. This fundamental limitation is expressed quantitatively by the second law of thermodynamics (see below). The role of friction in degrading the energy of mechanical systems may seem simple and obvious, but the quantitative connection between heat and work, as first discovered by Count Rumford, played a key role in understanding the operation of steam engines in the 19th century and similarly for all energy-conversion processes today. Total internal energy Although classical thermodynamics deals exclusively with the macroscopic properties of materials—such as temperature, pressure, and volume—thermal energy from the addition of heat can be understood at the microscopic level as an increase in the kinetic energy of motion of the molecules making up a substance. For example, gas molecules have translational kinetic energy that is proportional to the temperature of the gas: the molecules can rotate about their centre of mass, and the constituent atoms can vibrate with respect to each other (like masses connected by springs). Additionally, chemical energy is stored in the bonds holding the molecules together, and weaker long-range interactions between the molecules involve yet more energy. The sum total of all these forms of energy constitutes the total internal energy of the substance in a given thermodynamic state. The total energy of a system includes its internal energy plus any other forms of energy, such as kinetic energy due to motion of the system as a whole (e.g., water flowing through a pipe) and gravitational potential energy due to its elevation. The first law of thermodynamics The laws of thermodynamics are deceptively simple to state, but they are far-reaching in their consequences. The first law asserts that if heat is recognized as a form of energy, then the total energy of a system plus its surroundings is conserved; in other words, the total energy of the universe remains constant. The first law is put into action by considering the flow of energy across the boundary separating a system from its surroundings. Consider the classic example of a gas enclosed in a cylinder with a movable piston. The walls of the cylinder act as the boundary separating the gas inside from the world outside, and the movable piston provides a mechanism for the gas to do work by expanding against the force holding the piston (assumed frictionless) in place. If the gas does work W as it expands, and/or absorbs heat Q from its surroundings through the walls of the cylinder, then this corresponds to a net flow of energy W − Q across the boundary to the surroundings. In order to conserve the total energy U, there must be a counterbalancing change ΔU = Q − W (1) in the internal energy of the gas. The first law provides a kind of strict energy accounting system in which the change in the energy account (ΔU) equals the difference between deposits (Q) and withdrawals (W). There is an important distinction between the quantity ΔU and the related energy quantities Q and W. Since the internal energy U is characterized entirely by the quantities (or parameters) that uniquely determine the state of the system at equilibrium, it is said to be a state function such that any change in energy is determined entirely by the initial (i) and final (f) states of the system: ΔU = Uf − Ui. However, Q and W are not state functions. Just as in the example of a bursting balloon, the gas inside may do no work at all in reaching its final expanded state, or it could do maximum work by expanding inside a cylinder with a movable piston to reach the same final state. All that is required is that the change in energy (ΔU) remain the same. By analogy, the same change in one’s bank account could be achieved by many different combinations of deposits and withdrawals. Thus, Q and W are not state functions, because their values depend on the particular process (or path) connecting the same initial and final states. Just as it is more meaningful to speak of the balance in one’s bank account than its deposit or withdrawal content, it is only meaningful to speak of the internal energy of a system and not its heat or work content. From a formal mathematical point of view, the incremental change dU in the internal energy is an exact differential (see differential equation), while the corresponding incremental changes d′Q and d′W in heat and work are not, because the definite integrals of these quantities are path-dependent. These concepts can be used to great advantage in a precise mathematical formulation of thermodynamics (see below Thermodynamic properties and relations). Heat engines The classic example of a heat engine is a steam engine, although all modern engines follow the same principles. Steam engines operate in a cyclic fashion, with the piston moving up and down once for each cycle. Hot high-pressure steam is admitted to the cylinder in the first half of each cycle, and then it is allowed to escape again in the second half. The overall effect is to take heat Q1 generated by burning a fuel to make steam, convert part of it to do work, and exhaust the remaining heat Q2 to the environment at a lower temperature. The net heat energy absorbed is then Q = Q1 − Q2. Since the engine returns to its initial state, its internal energy U does not change (ΔU = 0). Thus, by the first law of thermodynamics, the work done for each complete cycle must be W = Q1 − Q2. In other words, the work done for each complete cycle is just the difference between the heat Q1 absorbed by the engine at a high temperature and the heat Q2 exhausted at a lower temperature. The power of thermodynamics is that this conclusion is completely independent of the detailed working mechanism of the engine. It relies only on the overall conservation of energy, with heat regarded as a form of energy. In order to save money on fuel and avoid contaminating the environment with waste heat, engines are designed to maximize the conversion of absorbed heat Q1 into useful work and to minimize the waste heat Q2. The Carnot efficiency (η) of an engine is defined as the ratio W/Q1—i.e., the fraction of Q1 that is converted into work. Since W = Q1 − Q2, the efficiency also can be expressed in the form 32 math special comps (2) If there were no waste heat at all, then Q2 = 0 and η = 1, corresponding to 100 percent efficiency. While reducing friction in an engine decreases waste heat, it can never be eliminated; therefore, there is a limit on how small Q2 can be and thus on how large the efficiency can be. This limitation is a fundamental law of nature—in fact, the second law of thermodynamics (see below). Isothermal and adiabatic processes Because heat engines may go through a complex sequence of steps, a simplified model is often used to illustrate the principles of thermodynamics. In particular, consider a gas that expands and contracts within a cylinder with a movable piston under a prescribed set of conditions. There are two particularly important sets of conditions. One condition, known as an isothermal expansion, involves keeping the gas at a constant temperature. As the gas does work against the restraining force of the piston, it must absorb heat in order to conserve energy. Otherwise, it would cool as it expands (or conversely heat as it is compressed). This is an example of a process in which the heat absorbed is converted entirely into work with 100 percent efficiency. The process does not violate fundamental limitations on efficiency, however, because a single expansion by itself is not a cyclic process. The second condition, known as an adiabatic expansion (from the Greek adiabatos, meaning “impassable”), is one in which the cylinder is assumed to be perfectly insulated so that no heat can flow into or out of the cylinder. In this case the gas cools as it expands, because, by the first law, the work done against the restraining force on the piston can only come from the internal energy of the gas. Thus, the change in the internal energy of the gas must be ΔU = −W, as manifested by a decrease in its temperature. The gas cools, even though there is no heat flow, because it is doing work at the expense of its own internal energy. The exact amount of cooling can be calculated from the heat capacity of the gas. Many natural phenomena are effectively adiabatic because there is insufficient time for significant heat flow to occur. For example, when warm air rises in the atmosphere, it expands and cools as the pressure drops with altitude, but air is a good thermal insulator, and so there is no significant heat flow from the surrounding air. In this case the surrounding air plays the roles of both the insulated cylinder walls and the movable piston. The warm air does work against the pressure provided by the surrounding air as it expands, and so its temperature must drop. A more-detailed analysis of this adiabatic expansion explains most of the decrease of temperature with altitude, accounting for the familiar fact that it is colder at the top of a mountain than at its base. The second law of thermodynamics The first law of thermodynamics asserts that energy must be conserved in any process involving the exchange of heat and work between a system and its surroundings. A machine that violated the first law would be called a perpetual motion machine of the first kind because it would manufacture its own energy out of nothing and thereby run forever. Such a machine would be impossible even in theory. However, this impossibility would not prevent the construction of a machine that could extract essentially limitless amounts of heat from its surroundings (earth, air, and sea) and convert it entirely into work. Although such a hypothetical machine would not violate conservation of energy, the total failure of inventors to build such a machine, known as a perpetual motion machine of the second kind, led to the discovery of the second law of thermodynamics. The second law of thermodynamics can be precisely stated in the following two forms, as originally formulated in the 19th century by the Scottish physicist William Thomson (Lord Kelvin) and the German physicist Rudolf Clausius, respectively: A cyclic transformation whose only final result is to transform heat extracted from a source which is at the same temperature throughout into work is impossible. A cyclic transformation whose only final result is to transfer heat from a body at a given temperature to a body at a higher temperature is impossible. The two statements are in fact equivalent because, if the first were possible, then the work obtained could be used, for example, to generate electricity that could then be discharged through an electric heater installed in a body at a higher temperature. The net effect would be a flow of heat from a lower temperature to a higher temperature, thereby violating the second (Clausius) form of the second law. Conversely, if the second form were possible, then the heat transferred to the higher temperature could be used to run a heat engine that would convert part of the heat into work. The final result would be a conversion of heat into work at constant temperature—a violation of the first (Kelvin) form of the second law. Central to the following discussion of entropy is the concept of a heat reservoir capable of providing essentially limitless amounts of heat at a fixed temperature. This is of course an idealization, but the temperature of a large body of water such as the Atlantic Ocean does not materially change if a small amount of heat is withdrawn to run a heat engine. The essential point is that the heat reservoir is assumed to have a well-defined temperature that does not change as a result of the process being considered. Entropy Entropy and efficiency limits entropy and the arrow of time entropy and the arrow of time Albert Einstein referred to entropy and the second law of thermodynamics as the only insights into the workings of the world that would never be overthrown. This video is an episode in Brian Greene's Daily Equation series. See all videos for this article The concept of entropy was first introduced in 1850 by Clausius as a precise mathematical way of testing whether the second law of thermodynamics is violated by a particular process. The test begins with the definition that if an amount of heat Q flows into a heat reservoir at constant temperature T, then its entropy S increases by ΔS = Q/T. (This equation in effect provides a thermodynamic definition of temperature that can be shown to be identical to the conventional thermometric one.) Assume now that there are two heat reservoirs R1 and R2 at temperatures T1 and T2. If an amount of heat Q flows from R1 to R2, then the net entropy change for the two reservoirs is differential equation (3) ΔS is positive, provided that T1 > T2. Thus, the observation that heat never flows spontaneously from a colder region to a hotter region (the Clausius form of the second law of thermodynamics) is equivalent to requiring the net entropy change to be positive for a spontaneous flow of heat. If T1 = T2, then the reservoirs are in equilibrium and ΔS = 0. The condition ΔS ≥ 0 determines the maximum possible efficiency of heat engines. Suppose that some system capable of doing work in a cyclic fashion (a heat engine) absorbs heat Q1 from R1 and exhausts heat Q2 to R2 for each complete cycle. Because the system returns to its original state at the end of a cycle, its energy does not change. Then, by conservation of energy, the work done per cycle is W = Q1 − Q2, and the net entropy change for the two reservoirs is differential equation (4) To make W as large as possible, Q2 should be kept as small as possible relative to Q1. However, Q2 cannot be zero, because this would make ΔS negative and so violate the second law of thermodynamics. The smallest possible value of Q2 corresponds to the condition ΔS = 0, yielding differential equation(5) This is the fundamental equation limiting the efficiency of all heat engines whose function is to convert heat into work (such as electric power generators). The actual efficiency is defined to be the fraction of Q1 that is converted to work (W/Q1), which is equivalent to equation (2). The maximum efficiency for a given T1 and T2 is thus differential equation (6) A process for which ΔS = 0 is said to be reversible because an infinitesimal change would be sufficient to make the heat engine run backward as a refrigerator. As an example, the properties of materials limit the practical upper temperature for thermal power plants to T1 ≅ 1,200 K. Taking T2 to be the temperature of the environment (300 K), the maximum efficiency is 1 − 300/1,200 = 0.75. Thus, at least 25 percent of the heat energy produced must be exhausted into the environment as waste heat to avoid violating the second law of thermodynamics. Because of various imperfections, such as friction and imperfect thermal insulation, the actual efficiency of power plants seldom exceeds about 60 percent. However, because of the second law of thermodynamics, no amount of ingenuity or improvements in design can increase the efficiency beyond about 75 percent. Entropy and heat death The example of a heat engine illustrates one of the many ways in which the second law of thermodynamics can be applied. One way to generalize the example is to consider the heat engine and its heat reservoir as parts of an isolated (or closed) system—i.e., one that does not exchange heat or work with its surroundings. For example, the heat engine and reservoir could be encased in a rigid container with insulating walls. In this case the second law of thermodynamics (in the simplified form presented here) says that no matter what process takes place inside the container, its entropy must increase or remain the same in the limit of a reversible process. Similarly, if the universe is an isolated system, then its entropy too must increase with time. Indeed, the implication is that the universe must ultimately suffer a “heat death” as its entropy progressively increases toward a maximum value and all parts come into thermal equilibrium at a uniform temperature. After that point, no further changes involving the conversion of heat into useful work would be possible. In general, the equilibrium state for an isolated system is precisely that state of maximum entropy. (This is equivalent to an alternate definition for the term entropy as a measure of the disorder of a system, such that a completely random dispersion of elements corresponds to maximum entropy, or minimum information.Seeinformation theory: Entropy.) Entropy and the arrow of time The inevitable increase of entropy with time for isolated systems provides an “arrow of time” for those systems. Everyday life presents no difficulty in distinguishing the forward flow of time from its reverse. For example, if a film showed a glass of warm water spontaneously changing into hot water with ice floating on top, it would immediately be apparent that the film was running backward because the process of heat flowing from warm water to hot water would violate the second law of thermodynamics. However, this obvious asymmetry between the forward and reverse directions for the flow of time does not persist at the level of fundamental interactions. An observer watching a film showing two water molecules colliding would not be able to tell whether the film was running forward or backward.
Text to PPT AI GPT FAQs
More custom GPTs by MagicSlides.app on the GPT Store
MagicSlides.app
Provide a topic we will create Professional Presentation give you PPTX downloadable file.
50K+
PDF to PPT AI
Provide a PDF URL, we will create Professional Presentation give you PPTX downloadable file.
1K+
Video URL to PPT AI
Provide a YouTube video URL, we will create Professional Presentation give you PPTX downloadable file.
200+
Topic to PPT AI
Provide a topic, we will create Professional Presentation give you PPTX downloadable file with AI.
100+
URL to PPT AI
Provide a URL, we will create Professional Presentation give you PPTX downloadable file with AI.
70+
AskForQrcode
Generate QR code images for any use case url, sms, phone number or contact.
4+

Best Alternative GPTs to Text to PPT AI on GPTs Store
Mia AI, your new best friend and life coach.
Designed for voice talks. +1.2M Conversations
1M+
Text to Video Maker, Video AI Scripting
Create stunning videos with AI Video Maker powered by VideoGPT. Just enter text, write your script, pick a style, and get full videos with subtitles, voiceovers, music, and stock footage. Fast, simple, and perfect for all creators.
1M+
ElevenLabs Text To Speech
Convert text into lifelike speech with ElevenLabs (limited to 1,500 characters)
300K+
AI Voice Generator
Say things with OpenAI text to speech.
200K+
VEO 3 Flow Text to Video Prompt Maker
Crafts cinematic Veo 3 Veo3 video prompts with visuals, sound, and story details in 50 words max. Image To Video
100K+
Ai logo generator
Generate high-quality images using DALL-E API based on user requests.
100K+
Text To Speech
I elevate your text into impactful speech with deep meaning. "People will forget your words, but they will always remember, how those forgotten words made them feel."
50K+
Music Creator ⭐️
Music creation from text prompts that is copyright free (.wav, .mp3, stems & MIDI) powered by CassetteAI. This GPT is your Copilot for Music Creation with AI.
50K+
0penA| Sora
Official Generative text-to-video model with G Promt
25K+
Text-to-Video
Sora transforms text prompts into detailed video scenes, simulating real-world dynamics.
25K+
Voice/Style/Tone AI Prompt Snippet Generator
Analyzes your writing and produces a prompt snippet you can use in any other prompt to guide AI in replicating your voice, style, and tone. Just provide the text in the prompt box or in a document (don't use a link or image). You don't need to write any additional prompt language with your text.
25K+
Text to Audio Converter
Helps script and convert text to audio.
25K+
Word, Text or PDF to PPT Slides
Converts Word or PDF documents into a PowerPoint VBA which you run to create a presentation. You can then apply your own template or design to this.
5K+
Word to PowerPoint content conversion
Translate work contents to PowerPoint
1K+
PPT Images and Diagrams
Text-Image for your PPT Slides. This gnerate a context-based images of diagrams for you to include in your PPT.
900+
ppt expert
An expert who processes various manuscript text or image files to create pretty design PPT files.
200+
Ppt Buddy
Converts text to presentations with AI images
100+
PPT to SOLO Taxonomy Tasks
Give me your PPT, PDF or Doc and I'll create some tasks based on SOLO Taxonomy, along with a rubric.
100+
ppt_text_maker
eager to make ppt text
40+
SMS Message
Trimmed SMS version: "Need to shorten messages for SMS. Chachi ppt often too long. Want it brief and straight to the point. Please write in English."
30+